Hydrocarbons occupy a vital role in our life and continue to play an important role for many more years to come. We need to follow all technological innovations to continue our productivity standards to achieve our production targets. Let us extend our vision to achieve this mission.

Monday, October 18, 2010

Refining Natural Gas

once a well has been drilled and the presence of commercially viable quantities of fossil fuel has been verified, the next step is actually lifting the natural gas out of the ground and processing it for transportation.
 
Natural gas, as it exists underground, is not exactly the same as the natural gas that comes through the pipelines to our homes and businesses. Natural gas, as we use it, is almost entirely methane. However, when we find natural gas underground, it comes associated with a variety of other trace compounds and gases, as well as oil and water, which must be removed. Natural gas transported through pipelines must meet purity specifications to be allowed in, so most natural gas processing occurs near the well.



Natural gas, as it is used by consumers, is much different from the natural gas that is brought from underground up to the wellhead. Although the processing of natural gas is in many respects less complicated than the processing and refining of crude oil, it is equally as necessary before its use by end users.

The natural gas used by consumers is composed almost entirely of methane. However, natural gas found at the wellhead, although still composed primarily of methane, is by no means as pure. Raw natural gas comes from three types of wells: oil wells, gas wells, and condensate wells. Natural gas that comes from oil wells is typically termed 'associated gas'. This gas can exist separate from oil in the formation (free gas), or dissolved in the crude oil (dissolved gas). Natural gas from gas and condensate wells, in which there is little or no crude oil, is termed 'nonassociated gas'. Gas wells typically produce raw natural gas by itself, while condensate wells produce free natural gas along with a semi-liquid hydrocarbon condensate. Whatever the source of the natural gas, once separated from crude oil (if present) it commonly exists in mixtures with other hydrocarbons; principally ethane, propane, butane, and pentanes. In addition, raw natural gas contains water vapor, hydrogen sulfide (H2S), carbon dioxide, helium, nitrogen, and other compounds.



Natural gas processing consists of separating all of the various hydrocarbons and fluids from the pure natural gas, to produce what is known as 'pipeline quality' dry natural gas. Major transportation pipelines usually impose restrictions on the make-up of the natural gas that is allowed into the pipeline. That means that before the natural gas can be transported it must be purified. While the ethane, propane, butane, and pentanes must be removed from natural gas, this does not mean that they are all 'waste products'.
In fact, associated hydrocarbons, known as 'natural gas liquids' (NGLs) can be very valuable by-products of natural gas processing. NGLs include ethane, propane, butane, iso-butane, and natural gasoline. These NGLs are sold separately and have a variety of different uses; including enhancing oil recovery in oil wells, providing raw materials for oil refineries or petrochemical plants, and as sources of energy.
A Natural Gas Processing Plant
Source: Duke Energy Gas Transmission Canada
While some of the needed processing can be accomplished at or near the wellhead (field processing), the complete processing of natural gas takes place at a processing plant, usually located in a natural gas producing region. The extracted natural gas is transported to these processing plants through a network of gathering pipelines, which are small-diameter, low pressure pipes. A complex gathering system can consist of thousands of miles of pipes, interconnecting the processing plant to upwards of 100 wells in the area. According to the American Gas Association's Gas Facts 2000, there was an estimated 36,100 miles of gathering system pipelines in the U.S. in 1999.
In addition to processing done at the wellhead and at centralized processing plants, some final processing is also sometimes accomplished at 'straddle extraction plants'. These plants are located on major pipeline systems. Although the natural gas that arrives at these straddle extraction plants is already of pipeline quality, in certain instances there still exist small quantities of NGLs, which are extracted at the straddle plants.
The actual practice of processing natural gas to pipeline dry gas quality levels can be quite complex, but usually involves four main processes to remove the various impurities:
Scroll down, or click on the links above to be transported to a particular section.
In addition to the four processes above, heaters and scrubbers are installed, usually at or near the wellhead. The scrubbers serve primarily to remove sand and other large-particle impurities. The heaters ensure that the temperature of the gas does not drop too low. With natural gas that contains even low quantities of water, natural gas hydrates have a tendency to form when temperatures drop. These hydrates are solid or semi-solid compounds, resembling ice like crystals. Should these hydrates accumulate, they can impede the passage of natural gas through valves and gathering systems. To reduce the occurrence of hydrates, small natural gas-fired heating units are typically installed along the gathering pipe wherever it is likely that hydrates may form.


Oil and Condensate Removal
In order to process and transport associated dissolved natural gas, it must be separated from the oil in which it is dissolved. This separation of natural gas from oil is most often done using equipment installed at or near the wellhead.
The actual process used to separate oil from natural gas, as well as the equipment that is used, can vary widely. Although dry pipeline quality natural gas is virtually identical across different geographic areas, raw natural gas from different regions may have different compositions and separation requirements. In many instances, natural gas is dissolved in oil underground primarily due to the pressure that the formation is under. When this natural gas and oil is produced, it is possible that it will separate on its own, simply due to decreased pressure; much like opening a can of soda pop allows the release of dissolved carbon dioxide. In these cases, separation of oil and gas is relatively easy, and the two hydrocarbons are sent separate ways for further processing. The most basic type of separator is known as a conventional separator. It consists of a simple closed tank, where the force of gravity serves to separate the heavier liquids like oil, and the lighter gases, like natural gas.
Gas Processing Engineers
Source: ChevronTexaco Corporation
In certain instances, however, specialized equipment is necessary to separate oil and natural gas. An example of this type of equipment is the Low-Temperature Separator (LTX). This is most often used for wells producing high pressure gas along with light crude oil or condensate. These separators use pressure differentials to cool the wet natural gas and separate the oil and condensate. Wet gas enters the separator, being cooled slightly by a heat exchanger. The gas then travels through a high pressure liquid 'knockout', which serves to remove any liquids into a low-temperature separator. The gas then flows into this low-temperature separator through a choke mechanism, which expands the gas as it enters the separator. This rapid expansion of the gas allows for the lowering of the temperature in the separator. After liquid removal, the dry gas then travels back through the heat exchanger and is warmed by the incoming wet gas. By varying the pressure of the gas in various sections of the separator, it is possible to vary the temperature, which causes the oil and some water to be condensed out of the wet gas stream. This basic pressure-temperature relationship can work in reverse as well, to extract gas from a liquid oil stream.


Water Removal
In addition to separating oil and some condensate from the wet gas stream, it is necessary to remove most of the associated water. Most of the liquid, free water associated with extracted natural gas is removed by simple separation methods at or near the wellhead. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of 'dehydrating' the natural gas, which usually involves one of two processes: either absorption, or adsorption.
Absorption occurs when the water vapor is taken out by a dehydrating agent. Adsorption occurs when the water vapor is condensed and collected on the surface.


Glycol Dehydration
An example of absorption dehydration is known as Glycol Dehydration. In this process, a liquid desiccant dehydrator serves to absorb water vapor from the gas stream. Glycol, the principal agent in this process, has a chemical affinity for water. This means that, when in contact with a stream of natural gas that contains water, glycol will serve to 'steal' the water out of the gas stream. Essentially, glycol dehydration involves using a glycol solution, usually either diethylene glycol (DEG) or triethylene glycol (TEG), which is brought into contact with the wet gas stream in what is called the 'contactor'. The glycol solution will absorb water from the wet gas. Once absorbed, the glycol particles become heavier and sink to the bottom of the contactor where they are removed. The natural gas, having been stripped of most of its water content, is then transported out of the dehydrator. The glycol solution, bearing all of the water stripped from the natural gas, is put through a specialized boiler designed to vaporize only the water out of the solution. While water has a boiling point of 212 degrees Fahrenheit, glycol does not boil until 400 degrees Fahrenheit. This boiling point differential makes it relatively easy to remove water from the glycol solution, allowing it be reused in the dehydration process.
A new innovation in this process has been the addition of flash tank separator-condensers. As well as absorbing water from the wet gas stream, the glycol solution occasionally carries with it small amounts of methane and other compounds found in the wet gas. In the past, this methane was simply vented out of the boiler. In addition to losing a portion of the natural gas that was extracted, this venting contributes to air pollution and the greenhouse effect. In order to decrease the amount of methane and other compounds that are lost, flash tank separator-condensers work to remove these compounds before the glycol solution reaches the boiler. Essentially, a flash tank separator consists of a device that reduces the pressure of the glycol solution stream, allowing the methane and other hydrocarbons to vaporize ('flash'). The glycol solution then travels to the boiler, which may also be fitted with air or water cooled condensers, which serve to capture any remaining organic compounds that may remain in the glycol solution. In practice, according to the Department of Energy's Office of Fossil Energy, these systems have been shown to recover 90 to 99 percent of methane that would otherwise be flared into the atmosphere.

Solid-Desiccant Dehydration
Solid-desiccant dehydration is the primary form of dehydrating natural gas using adsorption, and usually consists of two or more adsorption towers, which are filled with a solid desiccant. Typical desiccants include activated alumina or a granular silica gel material. Wet natural gas is passed through these towers, from top to bottom. As the wet gas passes around the particles of desiccant material, water is retained on the surface of these desiccant particles. Passing through the entire desiccant bed, almost all of the water is adsorbed onto the desiccant material, leaving the dry gas to exit the bottom of the tower.
Absorption Towers
Source: Duke Energy Gas Transmission Canada
Solid-desiccant dehydrators are typically more effective than glycol dehydrators, and are usually installed as a type of straddle system along natural gas pipelines. These types of dehydration systems are best suited for large volumes of gas under very high pressure, and are thus usually located on a pipeline downstream of a compressor station. Two or more towers are required due to the fact that after a certain period of use, the desiccant in a particular tower becomes saturated with water. To 'regenerate' the desiccant, a high-temperature heater is used to heat gas to a very high temperature. Passing this heated gas through a saturated desiccant bed vaporizes the water in the desiccant tower, leaving it dry and allowing for further natural gas dehydration.


Gas Processing Plant with Absorption Towers
Source: Duke Energy Gas Transmission Canada
Separation of Natural Gas Liquids
Natural gas coming directly from a well contains many natural gas liquids that are commonly removed. In most instances, natural gas liquids (NGLs) have a higher value as separate products, and it is thus economical to remove them from the gas stream. The removal of natural gas liquids usually takes place in a relatively centralized processing plant, and uses techniques similar to those used to dehydrate natural gas.
There are two basic steps to the treatment of natural gas liquids in the natural gas stream. First, the liquids must be extracted from the natural gas. Second, these natural gas liquids must be separated themselves, down to their base components.


NGL Extraction
There are two principle techniques for removing NGLs from the natural gas stream: the absorption method and the cryogenic expander process. According to the Gas Processors Association, these two processes account for around 90 percent of total natural gas liquids production.


The Absorption Method
Pipes and Absorption Towers
Source: Duke Energy Gas Transmission Canada
The absorption method of NGL extraction is very similar to using absorption for dehydration. The main difference is that, in NGL absorption, an absorbing oil is used as opposed to glycol. This absorbing oil has an 'affinity' for NGLs in much the same manner as glycol has an affinity for water. Before the oil has picked up any NGLs, it is termed 'lean' absorption oil. As the natural gas is passed through an absorption tower, it is brought into contact with the absorption oil which soaks up a high proportion of the NGLs. The 'rich' absorption oil, now containing NGLs, exits the absorption tower through the bottom. It is now a mixture of absorption oil, propane, butanes, pentanes, and other heavier hydrocarbons. The rich oil is fed into lean oil stills, where the mixture is heated to a temperature above the boiling point of the NGLs, but below that of the oil. This process allows for the recovery of around 75 percent of butanes, and 85 - 90 percent of pentanes and heavier molecules from the natural gas stream.
The basic absorption process above can be modified to improve its effectiveness, or to target the extraction of specific NGLs. In the refrigerated oil absorption method, where the lean oil is cooled through refrigeration, propane recovery can be upwards of 90 percent, and around 40 percent of ethane can be extracted from the natural gas stream. Extraction of the other, heavier NGLs can be close to 100 percent using this process.


The Cryogenic Expansion Process
Cryogenic processes are also used to extract NGLs from natural gas. While absorption methods can extract almost all of the heavier NGLs, the lighter hydrocarbons, such as ethane, are often more difficult to recover from the natural gas stream. In certain instances, it is economic to simply leave the lighter NGLs in the natural gas stream. However, if it is economic to extract ethane and other lighter hydrocarbons, cryogenic processes are required for high recovery rates. Essentially, cryogenic processes consist of dropping the temperature of the gas stream to around -120 degrees Fahrenheit.
There are a number of different ways of chilling the gas to these temperatures, but one of the most effective is known as the turbo expander process. In this process, external refrigerants are used to cool the natural gas stream. Then, an expansion turbine is used to rapidly expand the chilled gases, which causes the temperature to drop significantly. This rapid temperature drop condenses ethane and other hydrocarbons in the gas stream, while maintaining methane in gaseous form. This process allows for the recovery of about 90 to 95 percent of the ethane originally in the gas stream. In addition, the expansion turbine is able to convert some of the energy released when the natural gas stream is expanded into recompressing the gaseous methane effluent, thus saving energy costs associated with extracting ethane.
The extraction of NGLs from the natural gas stream produces both cleaner, purer natural gas, as well as the valuable hydrocarbons that are the NGLs themselves.


Natural Gas Liquid Fractionation
Once NGLs have been removed from the natural gas stream, they must be broken down into their base components to be useful. That is, the mixed stream of different NGLs must be separated out. The process used to accomplish this task is called fractionation. Fractionation works based on the different boiling points of the different hydrocarbons in the NGL stream. Essentially, fractionation occurs in stages consisting of the boiling off of hydrocarbons one by one. The name of a particular fractionator gives an idea as to its purpose, as it is conventionally named for the hydrocarbon that is boiled off. The entire fractionation process is broken down into steps, starting with the removal of the lighter NGLs from the stream. The particular fractionators are used in the following order:
  • Deethanizer - this step separates the ethane from the NGL stream.
  • Depropanizer - the next step separates the propane.
  • Debutanizer - this step boils off the butanes, leaving the pentanes and heavier hydrocarbons in the NGL stream.
  • Butane Splitter or Deisobutanizer - this step separates the iso and normal butanes.
By proceeding from the lightest hydrocarbons to the heaviest, it is possible to separate the different NGLs reasonably easily.



Sulfur and Carbon Dioxide Removal
In addition to water, oil, and NGL removal, one of the most important parts of gas processing involves the removal of sulfur and carbon dioxide. Natural gas from some wells contains significant amounts of sulfur and carbon dioxide. This natural gas, because of the rotten smell provided by its sulfur content, is commonly called 'sour gas'. Sour gas is undesirable because the sulfur compounds it contains can be extremely harmful, even lethal, to breathe. Sour gas can also be extremely corrosive. In addition, the sulfur that exists in the natural gas stream can be extracted and marketed on its own. In fact, according to the USGS, U.S. sulfur production from gas processing plants accounts for about 15 percent of the total U.S. production of sulfur.


Gas Sweetening Plant
Source: Duke Energy Gas Transmission Canada
Sulfur exists in natural gas as hydrogen sulfide (H2S), and the gas is usually considered sour if the hydrogen sulfide content exceeds 5.7 milligrams of H2S per cubic meter of natural gas. The process for removing hydrogen sulfide from sour gas is commonly referred to as 'sweetening' the gas.
The primary process for sweetening sour natural gas is quite similar to the processes of glycol dehydration and NGL absorption. In this case, however, amine solutions are used to remove the hydrogen sulfide. This process is known simply as the 'amine process', or alternatively as the Girdler process, and is used in 95 percent of U.S. gas sweetening operations. The sour gas is run through a tower, which contains the amine solution. This solution has an affinity for sulfur, and absorbs it much like glycol absorbing water. There are two principle amine solutions used, monoethanolamine (MEA) and diethanolamine (DEA). Either of these compounds, in liquid form, will absorb sulfur compounds from natural gas as it passes through. The effluent gas is virtually free of sulfur compounds, and thus loses its sour gas status. Like the process for NGL extraction and glycol dehydration, the amine solution used can be regenerated (that is, the absorbed sulfur is removed), allowing it to be reused to treat more sour gas.
Although most sour gas sweetening involves the amine absorption process, it is also possible to use solid desiccants like iron sponges to remove the sulfide and carbon dioxide.
Sulfur can be sold and used if reduced to its elemental form. Elemental sulfur is a bright yellow powder like material, and can often be seen in large piles near gas treatment plants, as is shown. In order to recover elemental sulfur from the gas processing plant, the sulfur containing discharge from a gas sweetening process must be further treated. The process used to recover sulfur is known as the Claus process, and involves using thermal and catalytic reactions to extract the elemental sulfur from the hydrogen sulfide solution.

.
Elemental Sulfur Production in a Gas Treatment Plant
Source: Duke Energy Gas Transmission Canada    
In all, the Claus process is usually able to recover 97 percent of the sulfur that has been removed from the natural gas stream. Since it is such a polluting and harmful substance, further filtering, incineration, and 'tail gas' clean up efforts ensure that well over 98 percent of the sulfur is recovered.




Gas processing is an instrumental piece of the natural gas value chain. It is instrumental in ensuring that the natural gas intended for use is as clean and pure as possible, making it the clean burning and environmentally sound energy choice. Once the natural gas has been fully processed, and is ready to be consumed, it must be transported from those areas that produce natural gas, to those areas that require it.                                         






Source
Naturalgas.org

No comments:

Post a Comment

Thanks for visiting the site and your interest in oil and gas drilling

free counters